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Abstract 

This study presents ECGRats, a software with a 

graphical user interface (GUI) that calculates heart rate 

variability features in rats, such as SDNN, rMSSD, NN20, 

and pNN20. The algorithm was developed in Python using 

high-pass, low-pass, and notch filters, along with a Haar 

wavelet transform to identify R-peaks. ECG data from 

Wistar rats, provided by the University of Parma, Italy, 

were used. 100 ECG recordings were grouped into sets of 

ten per rat. Each signal underwent baseline correction to 

remove DC offset before HRV parameters were extracted. 

HRV analysis included both time-domain and frequency-

domain features, providing insights into autonomic 

nervous system activity and cardiac arrhythmia. Data 

dispersion was significant in some groups with variations 

from 300 to 460 bpm, whereas other groups had lower 

variability, indicating a more homogeneous distribution. 

rMSSD was generally higher than SDNN, indicating 

greater short-term variability. Additionally, NN20 values 

were higher than pNN20, as expected. The tool's accuracy 

was validated by comparison with manual heart rate 

variability analysis methods, showing correlation. The 

results suggest that the tool may be useful for assessing 

heart rate variability in animal studies. 

 

 

1. Introduction 

In the human body, the cardiovascular system is 

responsible for transporting fluids, driven by cardiac 

cycles of contraction and relaxation initiated by 

depolarizations of cardiac cells [1][2]. These cells, at rest, 

are polarized and, upon depolarization, generate a charge 

inversion that propagates in a cascading effect between 

cells until the entire heart is depolarized [3], giving rise to 

the electrical activity that sustains cardiac function [4]. 

Capturing this electrical activity is essential to 

understanding heart function. Furthermore, the use of 

automated tools to process this information is becoming 

increasingly necessary [5]. One example is the 

electrocardiogram (ECG), a low-cost, easy-to-use device 

that is widely used to monitor the heart's electrical activity 

[6][7]. The use of software that performs automatic ECG 

analysis allows many recordings to be evaluated quickly, 

without the need for manual annotation by physicians or 

researchers [5]. This is useful not only in hospitals but also 

in animal research, such as with rats, which are widely used 

in disease studies and drug testing [8]. 

In studies involving rats, automated heart rate 

variability (HRV) analysis helps to understand how the 

heart responds to different conditions, such as medication 

use or the presence of disease [9][10]. In addition, it allows 

for comparison of data over time, assisting researchers in 

identifying significant patterns and effects [9][10]. The 

analysis begins with the identification of key components 

of the ECG waveform, such as the P waves, QRS 

complexes, and T waves [7][11]. Then, the R peaks are 

marked, enabling the calculation of HRV, which reflects 

how the heart adapts to physiological changes and is 

commonly used in rodent studies [12]. 

In this work, we present a graphical user interface (GUI) 

developed in Python, called ECGRats, which integrates 

algorithms for ECG preprocessing and calculates HRV 

features such as heart rate (HR), Standard Deviation of NN 

intervals (SDNN), Root Mean Square of Successive 

Differences (rMSSD), NN20, and pNN20, specifically 

designed for use in rodent research. The tool is freely 

available on GitHub and Zenodo as an open-source 

resource. 

The main goal of this work is not to propose new 

methods for wave delineation, as the algorithms used have 

already been applied in various studies. Instead, we aim to 

provide complementary documentation for this tool, 

making it easier to understand and use by other researchers. 

In this paper, we briefly describe the core concepts behind 

the implemented algorithms and compare the obtained 

results with reference values found in the literature. 
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2. Methods 

The tool was developed using Python, and the open-

source Kivy framework was used to create the graphical 

interface. This framework allows the development of 

interactive and responsive applications compatible with 

multiple platforms, including desktop and web 

environments. The tool was made available as open source 

at https://doi.org/10.5281/zenodo.14559400 [13]. 

 

2.1. Raw ECG signal processing 

The raw ECG signal processing was performed with the 

aim of reducing noise and distortions that compromise the 

accuracy in detecting the R wave. Initially, a baseline 

removal technique [14] was applied to eliminate slow 

variations caused by movement or breathing. 

The signal then passed through a Butterworth band-pass 

filter to detect the QRS complex. A filter with a band width 

of 5 Hz to 100 Hz was used to attenuate the P and T waves 

and highlight the high frequency component characteristic 

of the QRS. Additionally, a notch filter was used to 

suppress power line interference at 50 Hz. Finally, an 

electrical isoline correction was applied to remove residual 

displacements after filtering, ensuring that wave amplitude 

and duration measurements were not affected by offset 

artifacts. 

Next, a stationary wavelet transform (SWT) using the 

Haar wavelet was applied to highlight the rapid transitions 

present in the QRS complex. The detail coefficients were 

calculated at the level corresponding to the 45 Hz 

frequency band, which represents the main spectral band 

of the QRS. 

To locate R peaks, the algorithm identifies QRS 

intervals based on an adaptive threshold adjusted 

according to signal statistics within moving windows. In 

each identified interval, the R peak is determined as the 

point of greatest amplitude in the time domain. 

 

2.2. Requirements engineering 

Initially, software requirements engineering was 

performed, analysing the needs of users in this area. Based 

on this analysis, the requirements were documented, 

including their origin, priority, and potential dependencies. 

Finally, validation was conducted through screen 

prototyping. The first screen is designed to be the tool's 

home screen, while the second screen is for system 

configuration. The third screen generates data graphs and 

heart rate variability calculations. Finally, the fourth screen 

presents the statistical analysis. 

 

2.3. Tool validation 

To validate the tool, ECG signals from Wistar rats 

provided by the University of Parma, Italy, were used [15]. 

In this study, cardiac electrical activity was recorded using 

ECGs captured by platform receivers (RPC-1, Data 

Sciences International) positioned under the animals' cages 

and acquired with the ART-Gold 4.2 system (Data 

Sciences International) at a sampling rate of 1000 Hz. 

Electrocardiographic recordings were performed for 1 

hour during the dark (active) phase of the light-dark cycle, 

between 10:00 and 11:00 am, on different days. 

From the complete data set, the ECG signals were 

segmented into smaller parts, totalling 100 recordings 

lasting approximately 6 minutes each, organized into 

groups of ten recordings per animal. All signals were 

processed using the tool developed in this work. 

The results obtained were then compared with reference 

values described in the literature [16][17][18], considering 

classic parameters of HRV in rodents. The metrics 

evaluated included: HR, mean NN intervals, SDNN, 

rMSSD, as well as NN20 and NN6 counts, and their 

respective pNN20 and pNN6 ratios. This comparison 

allowed us to verify the consistency of the results produced 

by the tool in relation to the physiological standards 

expected for rats.  

 

3. Results 

The tool was developed in Python, with a graphical 

interface built using the Kivy framework. The screen 

structure was designed to facilitate the loading of signals, 

the execution of algorithms, and the interactive 

visualization of results. 

The first screen, Figure 1A, presents the tool named 

ECGRats. The second screen, Figure 1B, corresponds to 

the system configuration, allowing the user to define 

parameters such as the sampling rate, high-pass and low-

pass filters, and the notch filter. Additionally, there is a 

button to select an Excel file containing the pre-collected 

rat ECG data. 

The third screen, Figure 1C, displays the data graph, 

allowing visualization of the raw signals, the filtered 

signals, and the R peak markings (Figure 2). Below the 

graph, cardiac variability calculations are displayed, 

including HR, mean NN intervals, SDNN, rMSSD, NN20, 

NN6, pNN20, and pNN6. Finally, the fourth screen, Figure 

1D, presents the statistical analysis using two graphs: a 

Poincaré diagram and a histogram, providing a more 

detailed view of cardiac variability patterns.  

Regarding HRV, rMSSD was generally higher than 

SDNN, indicating a predominance of short-term variability 

in the analyzed recordings, a characteristic consistent with 

the autonomic pattern of rodents. Furthermore, absolute 

NN20 values were higher than pNN20 ratios, as expected, 

and variations in NN6 and pNN6 indices also contributed 

to the distinction between the groups. Overall, some 

groups demonstrated higher HRV, while others presented 
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a more stable profile with less fluctuation in NN intervals. 

 

 
 

Figure 1. ECGRats computerized tool interface. A. Home 

screen. B. Second screen for selecting files and setting 

parameters. C. Results screen. D. Last statistical analysis 

screen. 

 

 
Figure 2. Marking of R peaks in the ECG signal. 

 

 
Figure 3. Result of the distribution of values by 

reference range (%). 

 

After analyzing the parameters' compliance with the 

reference ranges established in the literature, the results 

showed that HR presented 97.3% of values within the 

expected range, while the average of the NN intervals 

(Average) presented 100% compliance. The SDNN 

parameter presented 61.8% of values within the reference 

range, and the rMSSD demonstrated high compliance, with 

99.1%. In contrast, the NN20, pNN20, NN6, and pNN6 

parameters presented low compliance, with less than 20% 

of values within the reference limits. These results are 

illustrated in Figure 3. 

 

4. Discussion 

The ECGRats tool demonstrated satisfactory 

performance in the automated analysis of rat ECGs, with 

results that, for the most part, approximate the 

physiological reference values described in the literature. 

The tool's accuracy was assessed by comparing it with 

manual methods of HRV analysis, demonstrating good 

agreement and reliability of the implemented automated 

approach. 

HR values were 97.3% within the expected range, 

indicating effective detection of R peaks and consistent 

calculation of RR intervals. The average showed 100% 

compliance, demonstrating accuracy in calculating the 

average heart rate. 

Among the HRV parameters, SDNN represents the 

standard deviation of all NN intervals, considered a global 

indicator of heart rate variability as it reflects the combined 

action of the sympathetic and parasympathetic nervous 

systems [16]. Higher SDNN values generally indicate 

better autonomic balance and a healthier physiological 

state [19]. In this study, SDNN values were within the 

reference range for 61.8% of the values, representing an 

overall positive trend, but one that may have been impacted 

by factors such as signal noise, sample size, and individual 
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biological variability [20]. 

The rMSSD parameter demonstrated high compliance, 

with 99.1% of values within the reference range. The 

rMSSD is used as a marker of vagal function, as it 

calculates the square root of the mean of the squares of the 

successive differences between adjacent NN intervals [17]. 

Because it is sensitive to rapid heart rate fluctuations, this 

index primarily reflects short-duration parasympathetic 

activity. Its adherence to the expected range reinforces the 

tool's sensitivity to vagal modulation in rats [17]. 

In contrast, the parameters NN20, pNN20, NN6, and 

pNN6, which quantify the relative amount of variation 

above certain thresholds between successive NN intervals, 

showed poor adherence to the reference values, with less 

than 20% of the data within the established limits. NN20, 

for example, measures the number of pairs of NN intervals 

whose absolute difference exceeds 20 milliseconds and, 

like rMSSD, is related to parasympathetic activity [19]. 

However, this parameter is less robust in short recordings 

and may be more susceptible to the presence of noise or 

rapid non-physiological variations [20]. 

It is important to highlight that the literature presents 

few well-established reference values for parameters such 

as NN20 and NN6 in rodents. This limitation hinders direct 

comparison and reinforces the need for additional studies 

that explore the physiology of these indicators in greater 

depth in animal models. Furthermore, because these are 

more recent metrics in experimental application with 

rodent ECGs, there is still room for standardization and 

validation of these indices. 

Overall, the findings indicate that ECGRats is reliable 

for research applications with rodent ECGs, especially 

when the focus is on global and short-term HRV metrics. 

However, the discrepancies observed in the counting 

parameters reinforce the need for continued improvement 

of the tool, as well as for expanding the reference database 

for animal studies.  
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