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Abstract

This study presents ECGRats, a software with a
graphical user interface (GUI) that calculates heart rate
variability features in rats, such as SDNN, rMSSD, NN20),
and pNN20. The algorithm was developed in Python using
high-pass, low-pass, and notch filters, along with a Haar
wavelet transform to identify R-peaks. ECG data from
Wistar rats, provided by the University of Parma, Italy,
were used. 100 ECG recordings were grouped into sets of
ten per rat. Each signal underwent baseline correction to
remove DC offset before HRV parameters were extracted.
HRYV analysis included both time-domain and frequency-
domain features, providing insights into autonomic
nervous system activity and cardiac arrhythmia. Data
dispersion was significant in some groups with variations
from 300 to 460 bpm, whereas other groups had lower
variability, indicating a more homogeneous distribution.
rMSSD was generally higher than SDNN, indicating
greater short-term variability. Additionally, NN20 values
were higher than pNN20, as expected. The tool's accuracy
was validated by comparison with manual heart rate
variability analysis methods, showing correlation. The
results suggest that the tool may be useful for assessing
heart rate variability in animal studies.

1. Introduction

In the human body, the cardiovascular system is
responsible for transporting fluids, driven by cardiac
cycles of contraction and relaxation initiated by
depolarizations of cardiac cells [1][2]. These cells, at rest,
are polarized and, upon depolarization, generate a charge
inversion that propagates in a cascading effect between
cells until the entire heart is depolarized [3], giving rise to
the electrical activity that sustains cardiac function [4].

Capturing this electrical activity is essential to
understanding heart function. Furthermore, the use of
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automated tools to process this information is becoming
increasingly necessary [5]. One example is the
electrocardiogram (ECG), a low-cost, easy-to-use device
that is widely used to monitor the heart's electrical activity
[6][7]. The use of software that performs automatic ECG
analysis allows many recordings to be evaluated quickly,
without the need for manual annotation by physicians or
researchers [5]. This is useful not only in hospitals but also
in animal research, such as with rats, which are widely used
in disease studies and drug testing [8].

In studies involving rats, automated heart rate
variability (HRV) analysis helps to understand how the
heart responds to different conditions, such as medication
use or the presence of disease [9][10]. In addition, it allows
for comparison of data over time, assisting researchers in
identifying significant patterns and effects [9][10]. The
analysis begins with the identification of key components
of the ECG waveform, such as the P waves, QRS
complexes, and T waves [7][11]. Then, the R peaks are
marked, enabling the calculation of HRV, which reflects
how the heart adapts to physiological changes and is
commonly used in rodent studies [12].

In this work, we present a graphical user interface (GUI)
developed in Python, called ECGRats, which integrates
algorithms for ECG preprocessing and calculates HRV
features such as heart rate (HR), Standard Deviation of NN
intervals (SDNN), Root Mean Square of Successive
Differences (rMSSD), NN20, and pNN20, specifically
designed for use in rodent research. The tool is freely
available on GitHub and Zenodo as an open-source
resource.

The main goal of this work is not to propose new
methods for wave delineation, as the algorithms used have
already been applied in various studies. Instead, we aim to
provide complementary documentation for this tool,
making it easier to understand and use by other researchers.
In this paper, we briefly describe the core concepts behind
the implemented algorithms and compare the obtained
results with reference values found in the literature.
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2. Methods

The tool was developed using Python, and the open-
source Kivy framework was used to create the graphical
interface. This framework allows the development of
interactive and responsive applications compatible with
multiple platforms, including desktop and web
environments. The tool was made available as open source
at https://doi.org/10.5281/zenodo.14559400 [13].

2.1. Raw ECG signal processing

The raw ECG signal processing was performed with the
aim of reducing noise and distortions that compromise the
accuracy in detecting the R wave. Initially, a baseline
removal technique [14] was applied to eliminate slow
variations caused by movement or breathing.

The signal then passed through a Butterworth band-pass
filter to detect the QRS complex. A filter with a band width
of 5 Hz to 100 Hz was used to attenuate the P and T waves
and highlight the high frequency component characteristic
of the QRS. Additionally, a notch filter was used to
suppress power line interference at 50 Hz. Finally, an
electrical isoline correction was applied to remove residual
displacements after filtering, ensuring that wave amplitude
and duration measurements were not affected by offset
artifacts.

Next, a stationary wavelet transform (SWT) using the
Haar wavelet was applied to highlight the rapid transitions
present in the QRS complex. The detail coefficients were
calculated at the level corresponding to the 45 Hz
frequency band, which represents the main spectral band
of the QRS.

To locate R peaks, the algorithm identifies QRS
intervals based on an adaptive threshold adjusted
according to signal statistics within moving windows. In
each identified interval, the R peak is determined as the
point of greatest amplitude in the time domain.

2.2. Requirements engineering

Initially, software requirements engineering was
performed, analysing the needs of users in this area. Based
on this analysis, the requirements were documented,
including their origin, priority, and potential dependencies.
Finally, validation was conducted through screen
prototyping. The first screen is designed to be the tool's
home screen, while the second screen is for system
configuration. The third screen generates data graphs and
heart rate variability calculations. Finally, the fourth screen
presents the statistical analysis.

2.3. Tool validation

To validate the tool, ECG signals from Wistar rats
provided by the University of Parma, Italy, were used [15].
In this study, cardiac electrical activity was recorded using
ECGs captured by platform receivers (RPC-1, Data
Sciences International) positioned under the animals' cages
and acquired with the ART-Gold 4.2 system (Data
Sciences International) at a sampling rate of 1000 Hz.
Electrocardiographic recordings were performed for 1
hour during the dark (active) phase of the light-dark cycle,
between 10:00 and 11:00 am, on different days.

From the complete data set, the ECG signals were
segmented into smaller parts, totalling 100 recordings
lasting approximately 6 minutes each, organized into
groups of ten recordings per animal. All signals were
processed using the tool developed in this work.

The results obtained were then compared with reference
values described in the literature [16][17][18], considering
classic parameters of HRV in rodents. The metrics
evaluated included: HR, mean NN intervals, SDNN,
rMSSD, as well as NN20 and NN6 counts, and their
respective pNN20 and pNN6 ratios. This comparison
allowed us to verify the consistency of the results produced
by the tool in relation to the physiological standards
expected for rats.

3. Results

The tool was developed in Python, with a graphical
interface built using the Kivy framework. The screen
structure was designed to facilitate the loading of signals,
the execution of algorithms, and the interactive
visualization of results.

The first screen, Figure 1A, presents the tool named
ECGRats. The second screen, Figure 1B, corresponds to
the system configuration, allowing the user to define
parameters such as the sampling rate, high-pass and low-
pass filters, and the notch filter. Additionally, there is a
button to select an Excel file containing the pre-collected
rat ECG data.

The third screen, Figure 1C, displays the data graph,
allowing visualization of the raw signals, the filtered
signals, and the R peak markings (Figure 2). Below the
graph, cardiac variability calculations are displayed,
including HR, mean NN intervals, SDNN, rMSSD, NN20,
NN6, pPNN20, and pNNG6. Finally, the fourth screen, Figure
1D, presents the statistical analysis using two graphs: a
Poincaré diagram and a histogram, providing a more
detailed view of cardiac variability patterns.

Regarding HRV, rMSSD was generally higher than
SDNN, indicating a predominance of short-term variability
in the analyzed recordings, a characteristic consistent with
the autonomic pattern of rodents. Furthermore, absolute
NN20 values were higher than pNN20 ratios, as expected,
and variations in NN6 and pNN®6 indices also contributed
to the distinction between the groups. Overall, some
groups demonstrated higher HRV, while others presented
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a more stable profile with less fluctuation in NN intervals.

ELECTROCARDIOGRAN
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Figure 1. ECGRats computerized tool interface. A. Home
screen. B. Second screen for selecting files and setting
parameters. C. Results screen. D. Last statistical analysis
screen.
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Figure 2. Marking of R peaks in the ECG signal.
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Figure 3. Result of the distribution of values by
reference range (%).

After analyzing the parameters' compliance with the
reference ranges established in the literature, the results
showed that HR presented 97.3% of values within the
expected range, while the average of the NN intervals
(Average) presented 100% compliance. The SDNN
parameter presented 61.8% of values within the reference
range, and the rMSSD demonstrated high compliance, with
99.1%. In contrast, the NN20, pNN20, NN6, and pNN6
parameters presented low compliance, with less than 20%
of values within the reference limits. These results are
illustrated in Figure 3.

4. Discussion

The ECGRats tool demonstrated satisfactory
performance in the automated analysis of rat ECGs, with
results that, for the most part, approximate the
physiological reference values described in the literature.
The tool's accuracy was assessed by comparing it with
manual methods of HRV analysis, demonstrating good
agreement and reliability of the implemented automated
approach.

HR values were 97.3% within the expected range,
indicating effective detection of R peaks and consistent
calculation of RR intervals. The average showed 100%
compliance, demonstrating accuracy in calculating the
average heart rate.

Among the HRV parameters, SDNN represents the
standard deviation of all NN intervals, considered a global
indicator of heart rate variability as it reflects the combined
action of the sympathetic and parasympathetic nervous
systems [16]. Higher SDNN values generally indicate
better autonomic balance and a healthier physiological
state [19]. In this study, SDNN values were within the
reference range for 61.8% of the values, representing an
overall positive trend, but one that may have been impacted
by factors such as signal noise, sample size, and individual
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biological variability [20].

The rMSSD parameter demonstrated high compliance,
with 99.1% of values within the reference range. The
rMSSD is used as a marker of vagal function, as it
calculates the square root of the mean of the squares of the
successive differences between adjacent NN intervals [17].
Because it is sensitive to rapid heart rate fluctuations, this
index primarily reflects short-duration parasympathetic
activity. Its adherence to the expected range reinforces the
tool's sensitivity to vagal modulation in rats [17].

In contrast, the parameters NN20, pNN20, NN6, and
pNN6, which quantify the relative amount of variation
above certain thresholds between successive NN intervals,
showed poor adherence to the reference values, with less
than 20% of the data within the established limits. NN20,
for example, measures the number of pairs of NN intervals
whose absolute difference exceeds 20 milliseconds and,
like rtMSSD, is related to parasympathetic activity [19].
However, this parameter is less robust in short recordings
and may be more susceptible to the presence of noise or
rapid non-physiological variations [20].

It is important to highlight that the literature presents
few well-established reference values for parameters such
as NN20 and NN6 in rodents. This limitation hinders direct
comparison and reinforces the need for additional studies
that explore the physiology of these indicators in greater
depth in animal models. Furthermore, because these are
more recent metrics in experimental application with
rodent ECGs, there is still room for standardization and
validation of these indices.

Overall, the findings indicate that ECGRats is reliable
for research applications with rodent ECGs, especially
when the focus is on global and short-term HRV metrics.
However, the discrepancies observed in the counting
parameters reinforce the need for continued improvement
of the tool, as well as for expanding the reference database
for animal studies.
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